Making the discoveries that defeat cancer

  • Home »
  • Research »
  • Repository

  • Administrators Login

  • Repository Homepage
  • About the Repository
  • Browse the Repository
  • Search the Repository
  • Contribute an Article
  • Missing Publications
  • Repository Help

Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer

Tools
- Tools
+ Tools

Steitz, J., Naumann, P., Ulrich, S., Haefner, M. F., Sterzing, F., Oelfke, U., Bangert, M. (2016) Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer. Radiation Oncology, 11. ISSN 1748-717X

[img]
Preview
Text
15414.pdf

Download (1MB) | Preview
Official URL: http://ro-journal.biomedcentral.com/articles/10.11...

Abstract

Introduction: The efficacy of radiation therapy treatments for pancreatic cancer is compromised by abdominal motion which limits the spatial accuracy for dose delivery - especially for particles. In this work we investigate the potential of worst case optimization for interfractional offline motion mitigation in carbon ion treatments of pancreatic cancer. Methods: We implement a worst case optimization algorithm that explicitly models the relative biological effectiveness of carbon ions during inverse planning. We perform a comparative treatment planning study for seven pancreatic cancer patients. Treatment plans that have been generated using worst case optimization are compared against (1) conventional intensity-modulated carbon ion therapy, (2) single field uniform dose carbon ion therapy, and (3) an ideal yet impractical scenario relying on daily re-planning. The dosimetric quality and robustness of the resulting treatment plans is evaluated using reconstructions of the daily delivered dose distributions on fractional control CTs. Results: Idealized daily re-planning consistently gives the best dosimetric results with regard to both target coverage and organ at risk sparing. The absolute reduction of D-95 within the gross tumor volume during fractional dose reconstruction is most pronounced for conventional intensity-modulated carbon ion therapy. Single field uniform dose optimization exhibits no substantial reduction for six of seven patients and values for D-95 for worst case optimization fall in between. The treated volume (D > 95 % prescription dose) outside of the gross tumor volume is reduced by a factor of two by worst case optimization compared to conventional optimization and single field uniform dose optimization. Single field uniform dose optimization comes at an increased radiation exposure of normal tissues, e.g. approximate to 2 Gy (RBE) in the mean dose in the kidneys compared to conventional and worst case optimization and approximate to 4 Gy (RBE) in D-1 in the spinal cord compared to worst case optimization. Conclusion: Interfractional motion substantially deteriorates dose distributions for carbon ion treatments of pancreatic cancer patients. Single field uniform dose optimization mitigates the negative influence of motion on target coverage at an increased radiation exposure of normal tissue. Worst case optimization enables an exploration of the trade-off between robust target coverage and organ at risk sparing during inverse treatment planning beyond margin concepts.

Item Type: Article
Authors (ICR Faculty only): Oelfke, Uwe
All Authors: Steitz, J., Naumann, P., Ulrich, S., Haefner, M. F., Sterzing, F., Oelfke, U., Bangert, M.
Additional Information: ISI Document Delivery No.: DY2UZ Times Cited: 0 Cited Reference Count: 36 Steitz, Julian Naumann, Patrick Ulrich, Silke Haefner, Matthias F. Sterzing, Florian Oelfke, Uwe Bangert, Mark DFG Collaborative Research Center 125 Cognition Guided Surgery; German Research Foundation [BA 2279/3-1] This work has been supported by the DFG Collaborative Research Center 125 Cognition Guided Surgery and through grant BA 2279/3-1 of the German Research Foundation. The funding bodies were not directly involved in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. 0 BIOMED CENTRAL LTD LONDON RADIAT ONCOL
Uncontrolled Keywords: Carbon ion therapy Treatment planning Worst case optimization Pancreatic cancer Interfractional motion MODULATED PROTON THERAPY ROBUST OPTIMIZATION RADIOTHERAPY UNCERTAINTIES RADIATION ACCOUNT RANGE
Research teams: ICR divisions > Radiotherapy and Imaging > Radiotherapy Physics Modelling
Depositing User: Barry Jenkins
Date Deposited: 07 Nov 2016 13:03
Last Modified: 07 Nov 2016 13:06
URI: http://publications.icr.ac.uk/id/eprint/15414

Actions (login required)

View Item View Item
The Royal Marsden - NHS foundation trust