Published text:

J C Francis, A McCarthy, M K Thomsen, A Ashworth, A Swain (2010) Brca2 and Trp53 Deficiency Cooperate in the Progression of Mouse Prostate Tumourigenesis, PLoS Genetics, Vol. 6(6), e1000995
Brca2 and Trp53 Deficiency Cooperate in the Progression of Mouse Prostate Tumourgenesis

Jeffrey C. Francis¹, Afshan McCarthy², Martin K. Thomsen¹, Alan Ashworth², Amanda Swain¹*

1 Section of Gene Function and Regulation, Institute of Cancer Research, London, United Kingdom, 2 Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom

Abstract

Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches.

Introduction

Prostate cancer is the most common cancer in men in developed countries, with a rising incidence of the disease. However, the etiology of this malignancy is still unclear. Prostate cancer progresses through a pathologically defined series of steps involving increasing grades of PIN, invasive adenocarcinoma and metastatic cancer [1]. Androgens are crucial for normal prostate function, and act as pro-survival and proliferation factors in cancer cells. As such, prostate cancer is sensitive to androgen levels and androgen depletion therapy via chemical or surgical castration is an initial step in treatment, typically resulting in tumour regression. However, the cancer normally re-grows and develops as a castration-independent tumour.

Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility [2,3]. Approximately 10% of prostate cancers are thought to be hereditary, and this number increases with early-onset disease. In spite of this, little is known about the mechanisms of tumourigenesis of inherited prostate cancer. Prostate cancer frequently clusters in families that have breast cancer, indicating a genetic link between these two diseases [4–6]. Germline mutations in BRCA2 predispose to both breast and ovarian cancer making it a good candidate gene for prostate cancer etiology. There is an increased risk of prostate cancer in individuals carrying a mutation in BRCA2, particularly early-onset disease [7–10]. The Breast Cancer Linkage Consortium found a significant relative risk of 4.63 for prostate cancer in male carriers of a deleterious BRCA2 mutation that rose to 7.33 in men under 65 years of age [7]. Consistent with this, analysis of men with early-onset disease indicates that BRCA2 carriers account for between 0.8–2% of prostate cancer cases, compared with the prevalence of 0.1% BRCA2 mutations in the general population [11,12]. In addition, BRCA2 mutation carriers have been associated with aggressive prostate cancer [13–16].

BRCA2 is thought to act as a tumour suppressor, with tumours arising from BRCA2 mutations frequently demonstrating loss-of-heterozygosity with loss of the wild-type allele. BRCA2 plays an important role in the repair of DNA double-strand breaks (DSB) through homologous recombination (HR) [17]. When there is a second identical DNA copy (i.e. the sister chromatid after replication) HR is the primary method of repair and is a relatively error-free DNA repair pathway. After DNA damage, BRCA2 directly interacts with the recombinase RAD51, a process that is essential for HR-mediated repair of DSBs [18]. When HR is defective or no sister chromatid is available the error-prone methods of single-strand annealing and non-homologous end joining are used for DNA repair [19]. BRCA2-deficient cells form chromosomal aberrations spontaneously in culture and are more sensitive to certain DNA damaging agents [19–21]. Hence, loss of BRCA2 is thought to principally lead to tumour progression by the failure to repair DNA by HR, leading to genomic instability.
Mouse models have shown a direct in vivo tumour suppressor role for Brca2 in the mammary gland and have demonstrated a synergistic tumour suppressor activity with Trp53. However, Brca2 heterozygous animals do not show a predisposition to tumour formation and Brca2 null mice result in embryonic lethality [18,22,23]. To circumvent this prenatal lethality, the Cre-LoxP system has been used to conditionally delete Brca2 in a tissue-specific manner. Deletion of Brca2 from the mouse mammary epithelium either fails to produce mammary-gland tumours or results in mammary-gland tumour formation with long latency (1.4–1.6 years) [24–26]. Tumour latency was reduced in Brca2 mutant mice that were Trp53 heterozygous [24]. In addition, mice with conditional inactivation of Brca2 and Trp53 developed mammary tumours with high penetrance at 6 months [25].

To understand the role of Brca2 in prostate cancer we have used a prostate-specific Cre line and a conditional Brca2 allele to delete Brca2 in adult mouse prostate epithelia. We show that loss of Brca2 in the prostate results in focal hyperplasia and low-grade (LG) PIN. Mice with conditional deletion of Brca2 and Trp53 have a high incidence of high-grade (HG) PIN, which contain cells with elevated DNA damage. PIN lesions in Brca2;Trp53 homozygous mutant prostates persist and continue to proliferate after androgen withdrawal. This work confirms the role of Brca2 as a tumour suppressor in the prostate and provides a model to test potential therapeutics in Brca2-deficient prostate neoplasia.

Results

Deletion of Brca2 from prostate epithelia results in hyperplasia and low-grade PIN

To investigate the role of Brca2 in the prostate we deleted Brca2 from the adult mouse prostate epithelia. To achieve this we mated mice carrying a Brca2 allele that has exon 11 flanked by loxP sites (Brca2^{FtF}) to transgenic mice carrying Cre recombinase under the control of a prostate-specific composite rat probasin promoter, PBCre4 [25,27]. This Cre line has been used successfully to delete tumour suppressor genes and activate oncogenes to drive prostate neoplasia and tumour progression [28–30]. Deletion of this Brca2 conditional allele results in the loss of a Rad51-interacting domain, and consequently, homozygous germline deletion leads to embryonic lethality [25].

Cohorts of male control (Brca2^{FtF/F}), Brca2 heterozygous (Brca2^{FtF+/F};PBCre4) and Brca2 mutant (Brca2^{FtF+/F};PBCre4) animals were generated and analysed for tumour progression at 6 months, 10–14 months and 15–20 months of age. None of the Brca2^{FtF+/F};PBCre4 prostates had any observable morphological differences compared to control prostates at any time point analysed (Figure 1 and Table 1). Focal hyperplasia that contained atypical cells was first observed in Brca2^{FtF+/F};PBCre4 prostates at 10–14 months and was also present in these animals at 15–20 months (Table 1). In addition, at 15–20 months a significant number of Brca2 homozygous mutant prostates had focal LG PIN in their lumens compared to control animals (6/17 compared to 0/28; Z-test p = 0.0001) (Figure 1A and Table 1). LG PIN lesions formed characteristic tufting and cribiform patterns (Figure 1B). These focal lesions contained multiple atypical cells that had prominent nucleoli and hyperchromasia. Hyperplasia and LG PIN lesions were present in all four prostatic lobes of Brca2 mutants.

**Figure 1. Deletion of Brca2 from prostate epithelia results in hyperplasia and LG PIN.** (A) Haematoxylin and eosin stained sections of dorsolateral prostate (DLP), ventral prostate (VP) and anterior prostate (AP) of control and Brca2 mutants. Control (Brca2^{FtF/F}) and Brca2 heterozygous (Brca2^{FtF+/F};PBCre4) prostates do not have PIN. Prostate-specific homozygous deletion of Brca2 (Brca2^{FtF+/F};PBCre4) results in focal hyperplasia and LG PIN (indicated with arrows). Black box shows the area shown in higher magnification in the panel below. (B) Detail of LG PIN in the DLP of Brca2 mutant prostates. Left panel shows a lumen with tufting pattern and right panel shows cribiform pattern. Arrowheads indicate atypical cells. doi:10.1371/journal.pgen.1000995.g001
Combined deletion of *Brca2* and *Trp53* leads to frequent high-grade PIN

The tumour suppressor *TP53* is frequently mutated in *BRCA2* cancers and studies in the mouse have shown a genetic interaction between *Brca2* and *Tp53* [24,31,32]. To test if *Brca2* and *Tp53* cooperate in the prostate we deleted both of these genes in the prostate epithelia using the *PBCre4* transgene. Cohorts of male control (*Brca2*+/+;*Tp53*+/+), *Brca2* homozygous and *Tp53* heterozygous (*Brca2*2/−;*Tp53*+/−;*PBCre4*), and *Brca2* and *Tp53* double homozygous (*Brca2*2/−;*,Tp53*2/−;*PBCre4*) animals were generated and analysed for tumour progression.

In addition to hyperplasia and LG PIN observed in *Brca2* mutants, deletion of *Brca2* and *Tp53* resulted in the formation of HG PIN lesions. At 10–14 months, *Brca2*2/−;*Tp53*2/−;*PBCre4* animals had focal LG PIN and hyperplasia (Figure 2A and Table 1). By 15–20 months, LG PIN was still present and a significant number of animals had focal HG PIN compared to control animals (6/15 compared to 0/11; Z-test *p*=0.0017). However, the frequency of HG PIN was significantly higher in *Brca2*2/−;*Tp53*2/−;*PBCre4* animals compared to *Brca2*2/−;*Tp53*2/−;*PBCre4* animals at this age (27/32 compared to 6/15; Z-test *p*=0.0058) (Figure 2A and Table 1). In these animals, focal areas of hyperplasia consisting of atypical cells were present as early as 6 months. At 10–14 months, LG PIN was present and a significant number of *Brca2*2/−;*Tp53*2/−;*PBCre4* animals had HG PIN compared to control animals (7/15 compared to 0/11; Z-test *p*=0.0276). Hyperplasia and LG PIN lesions were similar to those found in *Brca2*2/−;*PBCre4* mutants. Frequently multiple ducts of each lobe had HG PIN, which were present in proximal and distal regions of the prostate and consisted of many atypical cells filling the lumen. Atypical cells were unorganised with poor orientation, severe nuclear pleomorphism and abnormal nuclear to cytoplasm ratios (Figure 2B). Mitotic figures, apoptotic bodies and areas of necrosis were also present within HG PIN lesions (Figure 2B). In some cases, epithelial cells of the lumen protrude into the adjacent stroma and the smooth muscle surrounding the ducts was no longer continuous but was broken up (Figure 2B). These areas contained atypical smooth muscle cells and desmoplasia in the surrounding stroma. HG PIN lesions were predominantly seen in the anterior prostate (AP) and dorsal prostate (DP) of *Brca2;Tp53* homozygous mutant animals, with a small number observed in lateral and ventral lobes. Deletion of *LoxP* flanked *Brca2* and *Tp53* alleles by the *PBCre4* transgene in the prostate was confirmed by PCR analysis on micro dissected tissue (Figure S1).

*Brca2;Tp53* HG PIN lesions display increased DNA damage and apoptosis

As the predominant tumour suppressor function of *BRCA2* is thought to be the repair of DNA DSBs, we assessed the level of...
spontaneous DNA damage in Brca2 and Brca2;Trp53 mutant prostates. An early response to DNA damage is the phosphorylation of histone H2AX (γH2AX) [33]. Areas of hyperplasia and PIN in Brca2 mutant and Brca2;Trp53 mutant prostates contained cells that were positive for γH2AX, which were not present in control prostates (Figure 3A). While Brca2;Trp53;PBCre4 and Brca2;Trp53;PbcΔ7;Tpt53F/F;PBCre4 LG PIN lesions had individual or small groups of γH2AX positive cells, Brca2;Trp53 homozygous mutant prostates had large focal areas with many positive cells. These areas of γH2AX correlated with focal HG PIN lesions and were predominantly present in the AP and DP.

Deletion of Brca2 frequently results in increased levels of cellular apoptosis, presumably as a result of increased constitutive DNA damage. To determine the level of apoptosis in prostate epithelium after deletion of Brca2 and Trp53 we used the TUNEL assay, which has been used to identify apoptosis in Brca2 null neural tissue [32]. Brca2 mutant prostates showed a 3 fold increase in TUNEL positive cells in areas of hyperplasia and LG PIN, compared to control prostates that had few apoptotic cells (0.3% TUNEL positive cells vs 0.1% in control) (Figure 3B). A 4 fold increase in apoptosis was observed in Brca2;Trp53;PBCre4 PIN foci (0.4% TUNEL positive cells vs 0.1% in control). Notably, there was a 20 fold increase in apoptotic cells in areas of HG PIN in Brca2;Trp53 homozygous mutant prostates (2% TUNEL positive cells vs 0.1% in control) (Figure 3B). An anti-Caspase-3 antibody and histological analysis confirmed that TUNEL positive cells were apoptotic and not the result of labelling damaged DNA (data not shown).

**Brca2;Trp53** mutant prostates have hallmarks of cancer

Ki-67 is a marker of proliferating cells and a prognostic indicator in prostate cancer [34]. Analysis of Ki-67 showed a low number of proliferating cells in control prostates that increased 6 fold in areas of hyperplasia and LG PIN in Brca2;Trp53;PBCre4 mutant prostates (2.2% Ki-67 positive cells vs 0.4% in control) (Figure 4A). Levels of proliferation were 9 fold higher in Brca2;Trp53;PBCre4 PIN lesions (3.5% Ki-67 positive cells vs 0.4% in control), and dramatically increased by 30 fold in Brca2;Trp53;PBCre4 HG PIN lesions (12% Ki-67 positive cells vs 0.4% in control) (Figure 4A).

Levels of the androgen receptor (AR) expressed in the luminal epithelium usually increase in the nucleus during human prostate carcinoma progression [35]. Brca2F/F;PBCre4 and Brca2F/F;Trp53F/F;PBCre4 mutant prostates had increased AR expression in the cytoplasm and nucleus of epithelial cells that correlated with regions of LG PIN (Figure 4B). The level of AR increased significantly more in Brca2F/F;Trp53F/F;PBCre4 HG PIN lesions where it was found predominantly in the nucleus of luminal epithelial cells (Figure 4B).

The human and mouse prostate comprise of basal, luminal and rare neuroendocrine epithelial cells. In addition, intermediate or transit amplifying (TA) cells are observed in human prostates [36]. Brca2;Trp53 homozygous mutant HG PIN lesions frequently contained large groups of p63-expressing cells, a marker of basal cells (Figure 4C). Instead of their normal flat shape and position basal to the luminal cells, some p63-expressing cells were rounded and in a position near the lumen of the prostate. Sections fluorescein double labelled with p63 and the basal cell cytokeratin CK5 confirmed the presence of clusters of aberrant basal cells that protrude into the lumen (Figure 4D). Brca2;Trp53 homozygous mutant HG PIN lesions were then double labelled with CK5 and CK8, a marker of differentiated luminal cells. Areas of neoplasia showed an increase in CK8-expressing luminal cells that were often adjacent to a population of expanded CK5-expressing basal cells (Figure 4D). These regions occasionally had cells that were labelled with both CK8 and CK5, similar to human TA cells that co-express basal and luminal markers, which are not seen in control mouse prostates (Figure 4D) [36].

**Brca2;Trp53** PIN lesions proliferate post-castration

Androgen ablation is the standard treatment for human prostate cancer. To assess the response of neoplasias formed after deletion of Brca2 and Trp53 to androgen ablation, we surgically castrated animals at 16 months when HG PIN lesions have already formed and analysed them 4 days post-castration. Castration of control animals resulted in normal prostate regression, with a reduction in lumen size (Figure 5A). Brca2F/F;Trp53F/F;PBCre4 animals still contained focal areas of neoplasia with atypical cells following androgen-depletion (8/8 mutant animals) (Figure 5A). However, we did not observe ducts with filled lumens as seen in areas of PIN in non-castrated mutant animals.

Following castration of control male mice, AR is expressed at low levels predominantly throughout the cytoplasm of luminal and

![Figure 3. Brca2;Trp53 mutants have increased DNA damage and apoptosis.](https://doi.org/10.1371/journal.pgen.1000995.g003)
Figure 4. *Brca2;Trp53* mutant prostates have hallmarks of cancer. (A) Ki-67 immunohistochemistry shows increased proliferation in areas of LG PIN in *Brca2*<sup>F/F</sup>;*PBCre4* and *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutant prostates, a low number of proliferating cells are present in control (*Brca2*<sup>F/F</sup>) prostates. *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutants have a large number of proliferating cells in areas of HG PIN. (B) AR immunohistochemistry demonstrated increased levels of expression throughout the nucleus and cytoplasm in areas of LG PIN in *Brca2*<sup>F/F</sup>;*PBCre4* and *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutant prostates, compared to control prostates (*Brca2*<sup>F/F</sup>). *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutants have increased AR expression predominantly in the nucleus of cells in areas of HG PIN. (C) p63 immunohistochemistry shows an increase in p63-expressing cells in HG PIN lesions in *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutant prostates and normal expression in the basal cells of control (*Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>) prostates. Arrows indicate a cluster of abnormal p63-expressing cells that are rounder and nearer the lumen. (D) Left panel shows p63 (red) and CK5 (green) fluorescent immunohistochemistry analysis with labelled cells protruding into the lumen (white arrowheads) in a region of PIN in *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutants. Right panel shows CK5 (green, basal cells) and CK8 (red, luminal cells) fluorescent immunohistochemistry with PIN lesions in *Brca2*<sup>F/F</sup>;*Trp53*<sup>F/F</sup>;*PBCre4* mutants displaying an increase in luminal cells next to clusters of basal cells. White arrowhead marks CK5 and CK8 double labelled cells. DAPI nuclear stain is blue. The anterior prostates of 16-month-old animals are shown. doi:10.1371/journal.pgen.1000995.g004

**Discussion**

Studies on human carriers of deleterious *BRCA2* mutations have implicated this gene in prostate cancer etiology, but its function in this malignancy is unclear. We have undertaken a genetic analysis of *Brca2* function in the adult mouse prostate to define its role in prostate cancer and to create an in vivo model of *Brca2*-dependent prostate disease progression. Our study has demonstrated that loss of *Brca2* in the mouse prostate epithelium results in hyperplasia and LG PIN. These lesions have an increase in the number of cells with DNA damage and apoptotic cells, which could be the result of the impairment of DNA repair pathways. This demonstrates not only that *Brca2* can play a role in the initiation of prostate neoplasia but also that other factors are required for prostate tumour progression.

Deletion of *Brca2* and *Trp53* in mouse prostate epithelia resulted in a shorter latency and increased frequency of prostate neoplasia compared to deletion of *Brca2* alone (Figure 6). Moreover, the severity of neoplasia increased in *Brca2*/*Trp53* mutants, with the formation of hyperplasia and LG PIN at initial stages followed by a high incidence of multi-focal, proliferative HG PIN lesions with progressive cellular atypia (Figure 6). HG PIN lesions that form after deletion of *Brca2* and *Trp53* contained many cells with DNA damage, indicating increased genomic instability [17]. Multi-focal lesions are a common feature of human prostate cancer and may be due to defects in the DNA damage response [37]. The formation of HG PIN lesions in *Brca2*/*Trp53* mutant prostates may reflect the loss of key regulatory *p53*-dependent functions in response to DNA damage controlling cell-cycle checkpoints, apoptosis and senescence [38]. This demonstrates a co-operative tumour suppressor function of *Brca2* and *Trp53* in the prostate similar to the mammary gland [24–26].

A recent study investigating whether *TP53* and *BRCA2* are frequently mutated together in human prostate cancer found that TP53 overexpression could not distinguish *BRCA2* carriers with prostate cancer from a control group of prostate cancer cases [39].
However, this study was limited by the small number of BRCA2 cases and inability to detect TP53 mutations that do not stabilize the protein, which are frequently detected in tumours with impaired homologous recombination [40].

Deletion of Brca2 in other tissues frequently leads to an increase in apoptosis, which is partially or fully rescued upon loss of Trp53 [31,32,41]. However, we see more apoptotic cells in Brca2;Trp53 mutant HG PIN lesions than in Brca2 mutant LG PIN lesions. The increase in apoptosis in HG lesions could be due to the rapid accumulation of additional mutations by proliferating cells, which causes catastrophic amounts of DNA damage. This suggests that while some Brca2-null cells may be rescued from apoptosis after loss of Trp53, other cells in Brca2;Trp53 deficient HG neoplastic lesions undergo p53-independent cell death. Several different DNA damage-induced p53-independent mechanisms of apoptosis have been reported in different cell types [42].

AR expression is increased in the nucleus of cells in Brca2;Trp53 HG PIN lesions suggesting they are androgen sensitive. Consistent with this, castration of Brca2F/F;Trp53F/F;PBCre4 animals led to regression of PIN and a reduction of cells within the lumen. This suggests that BRCA2-driven prostate cancer would initially respond to conventional androgen ablation. However, atypical cells persist in Brca2;Trp53 deficient HG neoplastic lesions that continue to proliferate, indicating these lesions may be able to re-grow and become castration-resistant. Interestingly, some cells in Brca2;Trp53 mutant PIN lesions expressed AR at higher levels in the nucleus after castration, indicative of active AR signalling. Castration-resistant human prostate cancer growth commonly remains AR-dependent and is thought to occur through several mechanisms including AR amplification, AR mutation, changes in AR co-regulators and growth factor activation [43]. The presence of nuclear AR in castrated Brca2;Trp53 mutant prostates may indicate the regulation of proliferation by this factor after androgen depletion.

We often observed an increase in p63 positive basal cells, the presence of TA-like cells and an adjacent expansion of luminal cells in Brca2;Trp53 mutant HG PIN lesions. This suggests increased proliferation of the basal cell population, with maintenance of differentiation into luminal cells. Similarly, deletion of the tumour suppressor Pten with the PBCre4 transgene results in tumour formation with an increase in basal cells that contain a progenitor cell sub-population, the presence of TA-like

Figure 5. Brca2;Trp53 PIN lesions proliferate post-castration. Control (Brca2\(^{2f/2}\);Trp53\(^{2f/2}\)) and mutant Brca2\(^{2f/2}\);Trp53\(^{2f/2}\);PBCre4 prostates were surgically castrated at 16 months and culled 4 days later. (A) Haematoxylin and eosin stain shows atypical cells are still present in Brca2\(^{2f/2}\);Trp53\(^{2f/2}\);PBCre4 mutant prostates 4 days after castration, but there is a reduction in cells present in the lumen. Right panels show detail of neoplasia, atypical cells are indicated with arrowheads. (B) AR immunohistochemistry shows expression 4 days post-castration is predominantly throughout the cytoplasm of control and Brca2\(^{2f/2}\);Trp53\(^{2f/2}\);PBCre4 prostates. Arrows indicate cells that have higher nuclear AR expression. Right panels show detail of cells with nuclear AR expression, indicated with arrowheads. (C) TUNEL assay analysis demonstrates an increase in apoptotic cells in control and mutant prostates after castration. Arrows indicate some apoptotic cells. (D) Ki-67 immunohistochemistry shows there are proliferating cells in castrated Brca2\(^{2f/2}\);Trp53\(^{2f/2}\);PBCre4 mutants. LP is lateral prostate, AP is anterior prostate.

doi:10.1371/journal.pgen.1000995.g005

Figure 6. Schematic showing the progression of prostate neoplasia in Brca2 and Brca2;Trp53 mutant animals. Note that prostate neoplasia onset is earlier and the severity of PIN increases in Brca2 mutants as Trp53 is lost.
doi:10.1371/journal.pgen.1000995.g006
cells and luminal cell differentiation [44]. The increase in basal progenitor cell population could represent an expansion of cancer-initiating cells, indicating that HG PIN lesions in Brca2;Trp53 mutant prostates may originate from these cells. Several other murine models of prostate cancer that utilize the PBCre4 transgene display increased and aberrant p63 expression during early stages of cancer progression [29,30]. This transgene is expressed in both the basal and luminal cells of the mouse prostate [44]. In contrast, deletion of Pten using a PSA-driven Cre only expressed in luminal cells results in cancer without an expansion in p63 cells [45]. However, this model has slower kinetics than the Pten; PBCre4 model and tumours are initiated from cells in the luminal epithelial compartment. Frequently during human prostate tumour progression there is an increase in TA/progenitor cells, which has led to the proposal that these cells could be tumour-initiating cells [36,44,46]. Taken together, these data suggest that an increase in the basal progenitor cells could be a common early event in prostate neoplasia but may be dependent on the origin of the cancer-initiating cell.

Although we frequently observed HG PIN lesions in Brca2;Tip53 mutant prostates no invasive carcinoma formed. In contrast, deletion of Brca2 and Tip53 in the mouse mammary gland results in invasive carcinoma at 6 months, and consistent with this, human carriers of BRCA2 mutations have a high-risk of breast cancer. The lack of prostate carcinoma in our mutants may reflect the relatively low penetrance of prostate cancer in human BRCA2 mutation carriers and suggests there is only a subset of BRCA2 carriers that develop aggressive forms of the disease [13–16]. This subset may be dependent on additional genetic modifiers or environmental factors that influence the risk of individuals carrying a BRCA2 mutation forming prostate tumours [47]. It is possible that human carriers of deleterious BRCA2 mutations frequently form HG PIN lesions similar to our Brca2;Tip53 model but that never progress to carcinoma and therefore go undetected. Ongoing work into genetic modifiers of BRCA2 may identify which subgroups of patients with BRCA2 mutations are more at risk of developing aggressive forms of the disease.

Variations in genetic background can have a modifying effect on prostate tumour development in mice with tumour suppressor deletions [48]. Due to the complex nature of mouse breeding we were not able to investigate the effects of genetic background on the prostate lesions observed in Brca2;Tip53 mutant mice in this study. Although a change in genetic background may alter the frequency of tumour phenotype, we only observed PIN in mutant animals suggesting these lesions are an effect of Brca2 and Tip53 loss.

This murine study has demonstrated that deletion of the tumour suppressor Brca2 results in LG PIN, with the additional loss of a second tumour suppressor Tip53 leading to HG PIN. Other mouse models of tumour suppressor gene loss result in varying degrees of prostate tumour progression. Mice with prostate-specific homozygous Pten deletion progress to invasive carcinoma and metastasis [28]. The further loss of Tip53 in this model results in a shorter latency to invasive carcinoma [49]. Deletion of Nkx3.1, a gene involved in prostate epithelial cell differentiation, leads to mice that develop epithelial hyperplasia and dysplastic lesions that resemble human PIN, but do not progress to invasive carcinoma [50,51].

Our pre-invasive model could be used in the future to test the response to potential therapeutic agents and combination therapies. For example, a recent synthetic lethal approach using PARP inhibitors has been used successfully to specifically induce cytotoxicity in HR-deficient cells [52]. Promising phase I clinical data in BRCA2 carriers with a PARP inhibitor has shown antitumour activity, including resolution of bone metastases in one patient with prostate cancer [53]. These Brca2 mutant mice may provide a useful model to examine cellular responses, such as apoptosis, to combinations of therapies for optimisation of treatment. In addition, this study demonstrates that Brca2 acts as a tumour suppressor and can interact genetically with Tip53 deficiency in the prostate preventing DNA damage accumulation and neoplasia progression.

Materials and Methods

Ethics statement

Animals were handled in strict accordance with UK Home Office regulations.

Generation of prostate-specific Brca2 and Trp53 deletion mice

Brca2P/F (targeting exon 11) mice and Tip53P/F (targeting exons 2–10) mice [25] and ARR2PBCre transgenic mice, PBCre4 [27], have been previously described. The animals were bred on a mixed genetic background.

Mouse prostate histology and statistical analysis

Histological phenotype of samples was assessed on haematoxylin and eosin stained sections. Serial sections were then stained for immunohistochemical analysis. Histological assessment was based on published guidelines and assisted by a pathologist [54,55]. PIN lesions noted as LG were equivalent to PIN I-II and those noted as HG were equivalent to PIN III-IV in Park et al [54]. The two-sample Z-test was performed to test if there is a significant difference between groups of animals.

Quantification of proliferation and cell death

Ki-67 or TUNEL staining was performed by immunohistochemistry on sections and sections stained with nuclear brown DAB chromogen were counted as positive. Cells from at least 4 high power fields were counted per animal, which totalled more than 900 cells per animal. Five animals of each genotype were analysed. Randomly selected fields were counted for control analysis and sections corresponding to histologically identified areas of hyperplasia and PIN were counted for mutant animals. All values are significant with p<0.05 using Student t-test unless otherwise stated.

Immunohistochemistry analysis

Antibody stains were done on paraffin sections as previously described [56]. The following antibodies were used: Ki-67 (TEC-3, Dako, 1:200 with amplification), AR (PG-21, Upstate, 1:250 with amplification), p63 (4A4, Santa Cruz Biotechnology, 1:200 with amplification), γH2AX (JBW301, Upstate, 1:300 with amplification), CK5 (PRB-160P, Covance, 1:50), CK8 (MMS-162P, Covance, 1:200). The ABC elite vector kit was used for amplification using biotinylated secondary antibodies (Vector Laboratories) and the DAB substrate (Dako). Secondary fluorescent antibodies were obtained from Molecular Probes and were used at a 1:1000 dilution. TUNEL analysis was carried out using the ApopTag apoptosis detection kit (Chemicon).

Supporting Information

Figure S1 Brca2 and Tip53 are deleted in mutant adult prostates. PCR analysis of Cre, Brca2, and Tip53 on dissected anterior prostate (AP), lateral prostate (LP), dorsal prostate (DP), and ventral prostate (VP) tissue from a Brca2P/F;Tip53P/F (control) and
**Brc2 Loss Leads to Mouse Prostate Tumourigenesis**

**Author Contributions**
Conceived and designed the experiments: JCF AM AA AS. Performed the experiments: JCF AM. Analyzed the data: JCF AM AA AS. Wrote the paper: JCF AM. Produced preliminary data: AM MKT.

**Acknowledgments**
We thank Sally Clayton for technical help, Felipe Geyer for help with the pathological analysis, and Amar Ahmad for help with the statistical analysis.

**References**


